
Please cite this article in press as: Sali et al., Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop, Structure (2015), http://
dx.doi.org/10.1016/j.str.2015.05.013
Structure

Meeting Review
Outcome of the First wwPDB Hybrid/Integrative
Methods Task Force Workshop
Andrej Sali,1,* Helen M. Berman,2 Torsten Schwede,3 Jill Trewhella,4 Gerard Kleywegt,5 Stephen K. Burley,2,6

John Markley,7 Haruki Nakamura,8 Paul Adams,9,10 Alexandre M.J.J. Bonvin,11 Wah Chiu,12 Matteo Dal Peraro,13
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Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied
types of experimental data and theoretical information. We describe here the proceedings and conclusions
from the first wwPDBHybrid/Integrative Methods Task ForceWorkshop held at the European Bioinformatics
Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of
structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed
a series of questions central to the future of structural biology. How should integrative models be repre-
sented? How should the data and integrative models be validated? What data should be archived? How
should the data and models be archived? What information should accompany the publication of integrative
models?
Background
Historical Rationale for the Workshop

The PDB (http://wwpdb.org) was founded in 1971 with seven

protein structures as its first holdings (Protein Data Bank,

1971). The global PDB archive now holds more than 100,000

atomic structures of biological macromolecules and their com-

plexes, all of which are freely accessible. Most structures in

the PDB archive (�90%) have been determined by X-ray crystal-

lography, with the remainder contributed by two newer 3D struc-

ture determinationmethods, nuclear magnetic resonance (NMR)

spectroscopy and 3D electron microscopy (3DEM).
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Considerable effort has gone into understanding how to best

curate the structural models and experimental data produced

with these methods. Over the past several years, the Worldwide

PDB (wwPDB; the global organization responsible for maintain-

ing the PDBarchive) (Berman et al., 2003) has established expert,

method-specific task forces to advise on which experimental

data and metadata from each method should be archived and

how these data and the resulting structuremodels should be vali-

dated. The wwPDB X-ray Validation Task Force (VTF) made

detailed recommendations on how to best validate structures

determined by X-ray crystallography (Read et al., 2011). These
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recommendations have been implemented as a software pipe-

line used within the wwPDB Deposition and Annotation (D&A)

system. Initial recommendations of the wwPDB NMR (Monte-

lione et al., 2013) and Electron Microscopy (Henderson et al.,

2012) VTFs have also been implemented. In addition, thewwPDB

and, in later years, the Structural Biology Knowledgebase

(SBKB), spearheaded three workshops focused on validation,

archiving, and dissemination of comparative protein structure

models (Berman et al., 2006; Schwede et al., 2009). It is antici-

pated that as new validation methods are developed and as

more experience is gained with existing ones, additional valida-

tion procedures will be implemented in the wwPDB D&A system.

Increasingly, structures of very large macromolecular ma-

chines are being determined by combining observations from

complementary experimental methods, including X-ray crystal-

lography, NMR spectroscopy, 3DEM, small-angle scattering

(SAS), crosslinking, and many others (Figure 1; Table 1). Data

from these complementary methods are used to compute inte-

grative or hybrid models (Ward et al., 2013). Atomic models pro-

duced in this fashion have been deposited in the PDB, but there

is currently no mechanism within the PDB framework for

archiving the experimental data generated by methods other

than X-ray crystallography, NMR spectroscopy, and 3DEM.

The most recently established task force, the wwPDB SAS

Task Force (Trewhella et al., 2013), recommended creation of a

SAS data and model repository that would interoperate with

the PDB. The SAS Task Force also recommended that an inter-

national meeting be held to consider how best to deal with the

archiving of data and models derived from integrative structure

determination approaches.

In response, a Hybrid/Integrative Methods Task Force was

assembled by the wwPDB organization. Its inaugural meeting
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34Physics Department, Heinrich-Heine University Düsseldorf, 40225 Du
35Division of Computational Bioscience, Center for Information Techno
36Chair for Molecular Physical Chemistry, Heinrich-Heine-Universität, U
37European Molecular Biology Laboratory, Hamburg Unit, Notkestrass
*Correspondence: sali@salilab.org
http://dx.doi.org/10.1016/j.str.2015.05.013
All attendees of the Workshop are listed as authors.

2 Structure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved
was held at the EMBL European Bioinformatics Institute (EBI)

on October 6 and 7, 2014 (http://wwpdb.org/task/hybrid.php).

In all, 38 participants from 37 academic and government institu-

tions worldwide attended the workshop, which was co-chaired

by Andrej Sali (University of California, San Francisco, USA),

Torsten Schwede (Swiss Institute of Bioinformatics [SIB] and

University of Basel, Switzerland), and Jill Trewhella (University

of Sydney, Australia). Attendees included experts in relevant

experimental techniques, integrative modeling, visualization,

and data and model archiving.

The workshop began with plenary talks followed by focused

discussions. Gerard Kleywegt introduced the workshop objec-

tives. Andrej Sali outlined the current state of integrative

modeling. Helen Berman gave an overview of the history and sta-

tus of the wwPDB organization. Jill Trewhella described the

increasing role of SAS in integrative structural modeling, the

need for the development of community standards and valida-

tion tools for biomolecular modeling using SAS data, and how

SAS data and modeling resources could interoperate with the

PDB. Claus Seidel outlined state-of-the-art single-molecule

and ensemble Förster resonance energy transfer (FRET) spec-

troscopy (Kalinin et al., 2012) and live cell imaging, as well as

related label-based spectroscopic methods for measuring

select interatomic distances in macromolecular systems. Tors-

ten Schwede presented the Protein Model Portal (Haas et al.,

2013), including its linking of large databases of comparative

models with experimental structure information in the PDB,

and the Model Archive repository for all categories of in silico

structural models.

Current Archives for Models and/or Supporting Data

In this section, we review the PDB and management of data

derived from crystallography, NMR spectroscopy, 3DEM, and
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SAS, plus archives for models derived exclusively on the basis

on theoretical information.

PDB. For more than four decades, the PDB has served as the

single global archive for atomic models of biological macromol-

ecules; first for those derived from crystallography, and subse-

quently for models from NMR spectroscopy and 3DEM. The

PDB also archives experimental data necessary to validate the

structural models determined using these three methods. In

addition, descriptions of the chemistry of polymers and ligands

are collected, as are metadata describing sample preparation,

experimental methods, model building, refinement statistics,

literature references, and so forth. For all structural models in

the PDB, geometric features are assessed with respect to stan-

dard valence geometry and intermolecular interactions, as rec-

ommended by the three wwPDB VTFs mentioned above.

Crystallography: Models and Data. For structures derived us-

ing X-ray, neutron, and combined X-ray/neutron crystallography,

it has been mandatory to deposit structure factor amplitudes

into the PDB since 2008 (http://www.wwpdb.org/news/news?

year=2007#29-November-2007); until then, the submission of

these primary data was optional. Additional validation against

deposited structure factor amplitudes is carried out using proce-

dures recommended by the X-ray VTF (Read et al., 2011). The re-

sulting validation report includes graphical summaries of the

quality of the overall model plus residue-specific features.

Detailed assessments of various aspects of the model and its

agreement with experimental and stereochemical data are also

provided. In the near future, unmerged intensities will also be

collected, enabling further validation activities.

NMR Spectroscopy: Models and Data. The Biological Mag-

netic Resonance DataBank (BioMagResBank or BMRB; http://

www.bmrb.wisc.edu) is a repository for experimental and

derived data gathered from NMR spectroscopic studies of bio-

logical molecules. The BMRB archive contains quantitative

NMR spectral parameters, including assigned chemical shifts,

coupling constants, and peak lists together with derived data,

including relaxation parameters, residual dipolar couplings,

hydrogen exchange rates, pKa values, and so forth. Other data

contained in the BMRB include: NMR restraints processed

from original author depositions available from the PDB; time-

domain spectral data from NMR experiments used to assign

spectral resonances and determine structures of biological mac-

romolecules; chemical shift and structure validation reports; and

a database of 1D and 2D 1H- and 13C-NMR spectra formore than

1,200 metabolites. The BMRB website also provides tools for

querying and retrieving data.

Since 2006, BMRB has been a member of the wwPDB orga-

nization (Markley et al., 2008). Chemical shift and restraint data

that accompany model data are housed in both the BMRB

and PDB archives. Deposited NMR data without model coordi-

nates reside exclusively in the BMRB archive. The wwPDB

D&A system provides for deposition, annotation, and validation

of NMR models and related experimental data. Depositors of

chemical shift and other data sets without accompanying

models are automatically redirected to BMRB to deposit their

data. Data exchange between the BRMB and PDB archives

is facilitated by software tools utilizing correspondences main-

tained between the PDB Exchange Dictionary (PDBx) and the

BMRB NMR-STAR Dictionary. Validation methods for NMR-
derived models, measured chemical shifts, and restraint data

are currently under development, in response to recommenda-

tions of the NMR VTF (Montelione et al., 2013). A working

group composed of the major biomolecular NMR software de-

velopers has created a common NMR exchange format (NEF)

for structural restraints, similar to NMR-STAR. The adoption

of this NEF by NMR software developers will simplify data

exchange and the archiving of NMR structural restraints by

the wwPDB.

Electron Microscopy: Models and Maps. Atomistic structural

models determined using 3DEM methods were first archived

in the PDB in the 1990s. In 2002, the EM Data Bank (EMDB)

was created by the Macromolecular Structure Database

(now PDBe) at the EBI. In 2006, the EMDataBank (http://www.

EMDataBank.org) was established as the unified global portal

for one-stop deposition and retrieval of 3DEM density maps,

atomic models, and associated metadata (Lawson et al.,

2011). EMDataBank is a joint effort among PDBe, the Research

Collaboratory for Structural Bioinformatics (RCSB) at Rutgers,

and the National Center for Macromolecular Imaging (NCMI) at

Baylor College of Medicine. EMDataBank also serves as a

resource for news, events, software tools, data standards, raw

data, and validation methods for the 3DEM community. 3DEM

model and map data are now stored in separate branches of

the wwPDB ftp archive site.

As for NMR-based models, the wwPDB D&A system supports

processing of atomistic models and map data from 3DEM struc-

ture determinations. 3DEM map data deposited without atom-

istic models are stored exclusively in EMDB. Again, as for

NMR, a mapping is maintained between the PDBx data dictio-

nary and the EMDB XML-based data model. Validation methods

for 3DEMmaps and atomistic models are currently under devel-

opment in response to recommendations from the EMVTF (Hen-

derson et al., 2012).

SAS: Data and Model Archiving. The report from the first

meeting of the wwPDB SAS Task Force (Trewhella et al., 2013)

made the case for establishing ‘‘a global repository that holds

standard format X-ray and neutron SAS data that is searchable

and freely accessible for download’’ and that ‘‘options should

be provided for including in the repository SAS-derived shape

and atomistic models based on rigid-body refinement against

SAS data along with specific information regarding the unique-

ness and uncertainty of the model, and the protocol used to

obtain it.’’

At present, there are two databases available for storing SAS

data and models with associated metadata and analyses, both

of which are freely accessible without limitations on data utiliza-

tion via the Internet. As of March 2015, BIOISIS (http://www.

bioisis.net/) contained 99 structures and is supported by teams

at the Advanced Light Source and Diamond, while SASBDB

(http://www.sasbdb.org/) (Valentini et al., 2015) contained 195

models and 114 experimental datasets and is supported by a

team at EMBL-Hamburg.

Having evolved separately, these databases are distinctive in

character. There was in principle agreement within the wwPDB

SAS Task Force that BIOISIS and SASBDB will exchange data

sets. Such exchangewould be a step toward developing a feder-

ated approach to SAS data and model archiving, which in turn

could ultimately be federated with the PDB, BMRB, and EMDB.
Structure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 3

http://www.wwpdb.org/news/news?year=2007#29-November-2007
http://www.wwpdb.org/news/news?year=2007#29-November-2007
http://www.bmrb.wisc.edu
http://www.bmrb.wisc.edu
http://www.EMDataBank.org
http://www.EMDataBank.org
http://www.bioisis.net/
http://www.bioisis.net/
http://www.sasbdb.org/


Figure 1. Examples of Recently Determined Integrative Structures
The molecular architecture of INO80 was determined with a 17-Å resolution cryo-electron microscopy (EM) map and 212 intra-protein and 116 inter-protein
crosslinks (Russel et al., 2009). The molecular architecture of Polycomb Repressive Complex 2 (PRC2) was determined with a 21-Å resolution negative-stain EM
map and�60 intra-protein and inter-protein crosslinks (Shi et al., 2014). Themolecular architecture of the large subunit of themammalianmitochondrial ribosome
(39S) was determined with a 4.9-Å resolution cryo-EM map and �70 inter-protein crosslinks (Ward et al., 2013). The molecular architecture of the RNA poly-
merase II transcription pre-initiation complex was determined with a 16-Å resolution cryo-EM map plus 157 intra-protein and 109 inter-protein crosslinks (Alber
et al., 2008). The atomic model of type III secretion system needle was determined with a 19.5-Å resolution cryo-EM map and solid-state nuclear magnetic
resonance (NMR) data (Loquet et al., 2012). Molecular architecture of the productive HIV-1 reverse transcriptase:DNAprimer-template complex in the open educt

(legend continued on next page)
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Table 1. Types of Structural Data Used in Integrative Modeling

Structural Information Method

Atomic structures of parts of the studied system X-Ray and neutron crystallography, NMR spectroscopy, 3DEM, comparative

modeling, and molecular docking

3D maps and 2D images Electron microscopy and tomography

Atomic and protein distances NMR, FRET, and other fluorescence techniques, DEER, EPR, and other

spectroscopic techniques; chemical crosslinks detected by mass spectrometry,

and disulfide bonds detected by gel electrophoresis

Binding site mapping NMR spectroscopy, mutagenesis, FRET

Size, shape, and pairwise atomic distance distributions SAS

Shape and size Atomic force microscopy, ion mobility mass spectrometry, fluorescence

correlation spectroscopy, and fluorescence anisotropy

Component positions Super-resolution optical microscopy, FRET imaging

Physical proximity Co-purification, native mass spectrometry, genetic methods, and gene/protein

sequence covariance

Solvent accessibility Footprinting methods, including H/D exchange assessed by mass spectrometry

or NMR, and even functional consequences of point mutations

Proximity between different genome segments Chromosome conformation capture and other data

Propensities for different interaction modes Molecular mechanics force fields, potentials of mean force, statistical potentials,

and sequence co-variation

Example methods that are informative about a variety of structural aspects of biomolecular systems are listed. 3DEM, 3D electron microscopy; DEER,

double electron-electron resonance; EPR, electron paramagnetic resonance; FRET, Förster resonance energy transfer; H/D, hydrogen/deuterium;

NMR, nuclear magnetic resonance; SAS, small-angle scattering.
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Further development of the sasCIF dictionary is required to

permit full data exchange between the two SAS data reposi-

tories. sasCIF is a core crystallographic information file (CIF)

developed to facilitate the SAS data exchange (Malfois and

Svergun, 2000). As its name implies, sasCIF was implemented

as an extension of the core CIF dictionary and has recently

been extended to include new elements related to models,

model fitting, validation tools, sample preparation, and experi-

mental conditions (M.K., J.D.W., and D.S., unpublished data).

sasCIFtools were developed as a documented set of publicly

available programs for sasCIF data processing and format con-

version; currently, SASBDB supports both import and export of

sasCIF files.

Protein Model Portal. Comparative or homology modeling is

routinely used to generate structural models of proteins for which
state was determined by Förster resonance energy transfer (FRET) positioning an
2012). The structure of HIV-1 capsid protein was determined using residual dipo
2013). The human genome architecture was determined based on tethered c
et al., 2012). The structural model of a-globin gene domain was determined base
et al., 2011). The molecular architecture of the proteosomal lid was determined us
models of the ESCRT-I complex were determined with SAXS, double electron-ele
cardiac myosin binding protein C was developed from a combination of crysta
orientations optimized against SAXS and small-angle neutron scattering data to
ensemble of [JCD]2 NMR structures were fitted into the averaged cryo-electron to
circadian timing KaiB-KaiC complex was obtained based on hydrogen/deuterium
et al., 2014). The pre-pore and pore conformations of the pore-forming toxin ae
ulations (Degiacomi and Dal Peraro, 2013; Degiacomi et al., 2013). Segment of a
shows the trajectory of b sheet opening during pore formation (Lukoyanova et al.,
cluster assembly proteins desulfurase (orange) and scaffold protein Isu (blue) with
mutagenesis (Prischi et al., 2010). Themolecular architecture of the SAGA transcri
crosslinks, several comparative models based on X-ray crystal structures, and
Structural organization of the bacterial (Thermus aquaticus) RNA polymerase-pro
validated by a crystal structure (Zhang et al., 2012). The RNA ribosome-binding ele
EMdata (Gong et al., 2015). Themolecular architecture of the complex between R
crystal structure of RNA polymerase II, homology models of some domains in tran
et al., 2010).
experimentally determined structural models are not yet avail-

able (Marti-Renom et al., 2000; Schwede et al., 2009). Until

2006, such in silico models could be archived in the PDB, albeit

in the absence of clear policies and procedures for their valida-

tion. Following recommendations from a stakeholder workshop

convened in November 2005 (Berman et al., 2006), depositions

to the PDB archive are limited to structural models substantially

determined by experimental measurements from a defined

physical sample (effective date October 15, 2006). The work-

shop also recommended that a central, publicly available archive

or portal should be established for exclusively in silico models,

and that methodology for estimating the accuracy of such

computational models should be developed.

The Protein Model Portal (PMP) (Arnold et al., 2009; Haas

et al., 2013) was developed at the SIB at the University of Basel
d screening using a known HIV-1 reverse transcriptase structure (Kalinin et al.,
lar couplings and small-angle X-ray scattering (SAXS) data (Deshmukh et al.,
hromosome conformation capture and population-based modeling (Kalhor
d on Chromosome Conformation Capture Carbon Copy (5C) experiments (Bau
ing native mass spectrometry and 28 crosslinks (Politis et al., 2014). Structure
ctron transfer, and FRET (Boura et al., 2011). Integrative model of actin and the
llographic and NMR structures of subunits and domains, with positions and
reveal information about the quaternary interactions (Whitten et al., 2008). The
mography map (Miyazaki et al., 2010). Integrative model of the cyanobacterial
exchange and collision cross-section data from mass spectrometry (Snijder

rolysin were obtained combining cryo-EM data and molecular dynamics sim-
pleurotolysin pore map (�11 Å resolution) with an ensemble of conformations
2015). A SAXS-based rigid-body model of a ternary complex of the iron-sulfur
bacterial ortholog of frataxin (yellow) was validated by NMR chemical shifts and
ption coactivator complexwas determinedwith 199 inter- and 240 intra-subunit
a transcription factor IID core EM map at 31 Å resolution (Han et al., 2014).
moter open complex obtained by FRET (Mekler et al., 2002) was subsequently
ment from turnip crinkle virus genome was determined using NMR, SAXS, and
NA polymerase II and transcription factor IIF was determined using a deposited
scription factor IIF, and 95 intra-protein and 129 inter-protein crosslinks (Chen
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as a component of the SBKB (Berman et al., 2009; Gabanyi et al.,

2011). Today, the SBKB integrates experimental information

provided by the PDB with in silico models computed by auto-

mated modeling resources. In addition, the PMP provides

access to several state-of-the-art model quality assessment

services (Schwede et al., 2009). Since 2013, the Model Archive

(http://modelarchive.org) resource has also served as a reposi-

tory for individually generated in silicomodels ofmacromolecular

structures, primarily those described in peer-reviewed publica-

tions. Finally, the Model Archive hosts all legacy models that

were available from the PDB archive prior to 2006.

Eachmodel in the PMP is assigned a stable, unique accession

code (and digital object identifier or DOI) to ensure accurate

cross-referencing in publications and other data repositories.

Unlike experimentally determined structural models, in silico

models are not the product of experimental measurements of a

physical sample. They are generated computationally using

various molecular modeling methods and underlying assump-

tions. Examples include comparative modeling, virtual docking

of ligand molecules to protein targets, virtual docking of one pro-

tein to another, simulations of molecular dynamics and motions,

and de novo (ab initio) protein modeling.

Effective archival storage of suchmodels depends critically on

capturing sufficient detail regarding underlying assumptions, pa-

rameters, methodology, and modeling constraints, to allow for

assessment and faithful re-computation of the model. It is also

essential that these models be accompanied by reliable

estimates of uncertainty. In October 2013, a workshop on

‘‘Theoretical Model Archiving, Validation and PDBx/mmCIF

Data Exchange Format’’ (http://www.proteinmodelportal.org/

workshop-2013/) was hosted at Rutgers University to launch

development of community standards for theoretical model

archiving.

Integrative/Hybrid Structure Modeling
Motivation

Samples of many biological macromolecules prove recalcitrant

to mainstream structural biology methods (i.e., crystallography,

NMR, and 3DEM), because they are not crystallizable, are insol-

uble, are not of adequate purity, are conformationally heteroge-

neous, are too large or small, or do not remain intact during the

course of the experiment. In such cases, integrative modeling

is increasingly being used to compute structural models based

on complementary experimental data and theoretical informa-

tion (Figures 1 and 2; Table 1) (Alber et al., 2007, 2008; Robinson

et al., 2007; Russel et al., 2012; Sali et al., 2003, 1990; Schneid-

man-Duhovny et al., 2014; Ward et al., 2013). Structural biology

is no stranger to integrative models. Insights into the molecular

details of the B-DNA double helix (Watson and Crick, 1953),

the a helix, and the b sheet (Pauling et al., 1951) all depended

on constructing structural models based on data derived from

multiple sources (albeit without the benefit of digital computa-

tion). Integrative structure modeling of today has its origins in at-

tempts to fit X-ray derived substructures into an EM density map

of a larger assembly (Rayment et al., 1993). Other early examples

include the model of the Gla-EGF domains from coagulation

Factor X based on NMR and SAS data (Sunnerhagen et al.,

1996), and the superhelical assembly of the bacteriophage fd

gene 5 protein with single-stranded DNA based on neutron
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and X-ray SAS data, EM data, and the crystal structure of G5P

(Olah et al., 1995); the latter study was inspired in part by molec-

ular dynamics simulations guided by contacts from an NMR

structure of the G5P dimer and EM data (Folmer et al., 1994).

Beyond overcoming sample limitations, the integrative

approach has several additional advantages (Alber et al.,

2007). First, synergy among the input data minimizes the draw-

backs of sparse, noisy, and ambiguous data obtained from

compositionally and structurally heterogeneous samples. Each

individual piece of data may contain relatively little structural in-

formation, but by simultaneously fitting a model to all data

derived from independent experiments, the uncertainty of the

structures that fit the data can be markedly reduced. Second,

the integrative approach can be used to produce all structural

models consistent with available data, instead of myopically

focusing on just one model. Third, comparison of an ensemble

of structural models permits estimation of precision and, some-

times, the accuracy of both the experimental data and themodel.

Fourth, the integrative approach can make structural biologists

more efficient by identifying which additional measurements

are likely to have the greatest impact on integrative model preci-

sion and accuracy. Finally, integrative modeling provides a

framework for considering perturbations of the system that are

often required to collect the data; for example, spin labels are

required for electron paramagnetic resonance experiments,

membrane proteins are often reconstituted in micelles for NMR

spectroscopy, and point mutations or even entire domains are

introduced to stabilize preferred conformations for crystalliza-

tion. While such perturbations complicate structural analysis,

integrative modeling may allow us to distinguish biologically

relevant states from artifacts of any individual approach. In sum-

mary, integrative structure determination maximizes the accu-

racy, precision, completeness, and efficiency of the structural

coverage of biomolecular systems.

Experimental and Computational Methods for

Generating Structural Information

Input information for integrative modeling can come from various

experimental methods, physical theories, and statistical ana-

lyses of databases of known structures, biopolymer sequences,

and interactions. These methods probe different structural as-

pects of the system (Table 1). In addition to information about

average structures, numerous methods provide insights into dy-

namics of the system, which can also be incorporated into inte-

grative modeling procedures (Russel et al., 2009). For example,

both NMR spectroscopy and X-ray crystallography provide ac-

cess to various measures of conformational dynamics; FRET,

time-dependent double electron-electron resonance (DEER)

spectroscopies, and even quantitative crosslinking/mass spec-

trometry (Fischer et al., 2013) can map distance changes in

time; small-angle X-ray scattering (SAXS) can provide time-

resolved information on the structures and processes with the

temporal resolution of a millisecond; molecular dynamics simu-

lations can map the dynamics of an atomic structure up to the

millisecond timescale; and high-speed atomic force microscopy

imaging can provide the dynamic live images of single molecules

(Ando, 2014).

Approach

All structural characterization approaches correspond to finding

models that best fit input information, as judged by use of

http://modelarchive.org
http://www.proteinmodelportal.org/workshop-2013/
http://www.proteinmodelportal.org/workshop-2013/
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The approach is illustrated by its application to the heptameric Nup84 subcomplex of the nuclear pore complex (Shi et al., 2014).
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a scoring function quantifying the difference between the

observed data and the data computed from the model. Thus,

any information about a structure determination target must

always be converted to an explicit structural model through

computation. Integrative approaches explicitly combine diverse

experimental and theoretical information, with the goal of

increasing accuracy, precision, coverage, and efficiency of

structure determination. Input information can vary greatly in

terms of resolution (i.e., precision, noise, uncertainty), accuracy,

and quantity. All structure determination methods are integra-

tive, albeit with differences in degree. At one end of the spec-

trum, even structure determination using predominantly crystal-

lographic, NMR, or high-resolution single-particle EM data also

generally requires a molecular mechanics force field description

of atomic structure. At the other end of the spectrum, integrative

methods rely more evenly on different types of information, often

resulting in coarser models with higher uncertainty (Figure 1). Ex-

amples of such integrative methods include docking of compar-

ative models of subunits into a 3DEM density map of the macro-

molecular assembly (Lasker et al., 2009); rigid-body fitting of

multi-domain structures and complexes determined by crystal-

lography or NMR to SAS data (Petoukhov and Svergun, 2005);
and use of conformational sampling methods with sparse NMR

data (Lange et al., 2012;Mueller et al., 2000), chemical crosslinks

(Young et al., 2000), or even chemical shift data alone (Shen

et al., 2008). It is not difficult to appreciate how integrative

methods blur distinctions between models based primarily on

theoretical considerations and those based primarily on experi-

mental measurements from a physical sample.

The practice of integrative structure determination is iterative,

consisting of four stages (Figure 2): gathering of data; choosing

the representation and encoding of all data within a numerical

scoring function consisting of spatial restraints; configurational

sampling to identify structural models with good scores; and

analyzing themodels, including quantifying agreement with input

spatial restraints and estimating model uncertainty. Input infor-

mation about the system can be used to (1) select the set of vari-

ables that best represent the system (system representation), (2)

rank the different configurations (scoring function), (3) search for

good-scoring solutions (sampling); and (4) further filter good-

scoring solutions produced by sampling.

Types of Integrative Models

A structural model of a macromolecular assembly is defined

by the relative positions and orientations of its components
Structure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 7
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(e.g., atoms, pseudo-atoms, residues, secondary structure ele-

ments, domains, subunits, and subcomplexes). While traditional

structural biology methods usually produce a single atomistic

model, integrative models tend to be more complex in at least

four respects. First, a model can be multi-scale (Grime and

Voth, 2014), representing different levels of structural detail by

a collection of geometrical primitives (e.g., points, spheres,

tubes, 3D Gaussians, or probability densities). Thus, the same

part of a system can be described with multiple representations

and different parts of a system can be represented differently. An

optimal representation facilitates accurate formulation of spatial

restraints together with efficient and complete sampling of good-

scoring solutions, while retaining sufficient detail (without over

fitting) such that the resulting models are maximally useful for

subsequent biological analysis (Schneidman-Duhovny et al.,

2014). Second, a model can be multi-state, specifying multiple

discrete states of the system required to explain the input infor-

mation (each state may differ in structure, composition, or both)

(Molnar et al., 2014; Pelikan et al., 2009). Third, a model can also

specify the order of states in time and/or transitions between the

states. This feature allows representation of a multi-step biolog-

ical process, a functional cycle (Diez et al., 2004), a kinetic

network (Pirchi et al., 2011), time evolution of a system (e.g.,

a molecular dynamics trajectory) (Bock et al., 2013), or FRET

trajectories; for a comprehensive description of biomolecular

function, it is essential to register state lifetimes, characteristic

relaxation times, and direct rate constants. Finally, an ensemble

of models may be provided to underscore the uncertainty in the

input information, with each individual model satisfying the input

information within an acceptable threshold (e.g., NMR-derived

ensembles currently available in the PDB [Clore and Gronen-

born, 1991; Snyder et al., 2005, 2014] and the ensembles gener-

ated from SAXS [Tria et al., 2015]). This aspect of the represen-

tation allows us to describe model uncertainty and to assess the

completeness of input information; such ensembles are distinct

from multiple states that represent actual variations in the

structure, as implied by experimental information that cannot

be accounted for by a single representative structure (Schneid-

man-Duhovny et al., 2014; Schröder, 2015).

Task Force Deliberations and Recommendations
Charge to the Task Force

A healthy debate is under way about how to classify structural

models. A major motivation for this discussion is the lack of ac-

curate general methods to assess the precision and accuracy

of any model. As a result, models are often classified based on

the predominant type of information used to compute them,

which in turn tends to reflect the data-to-parameter ratio and

thus model accuracy. However, as previously discussed, all

structures are in fact integrative models that have been derived

both from experimental measurements involving a physical

sample of a biological macromolecule and prior knowledge

of the underlying stereochemistry. It is therefore difficult, if

not impossible, to draw definitive lines on the spectrum

ranging from very well-determined ultra-high-resolution crys-

tallographic structures (>40 experimental observations per

non-hydrogen atom in the crystallographic asymmetric unit)

and structural models based on a single or even no experi-

mental observation.
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Reflecting this debate about model classification, there are in

principle several possibilities for archiving the models and asso-

ciated data among distinct, publicly accessible model/data re-

positories, including: (1) a single mega-archive that serves as

the repository for every type of structural model and data; (2) in-

dependent, free-standing repositories that house distinct types

ofmodels and data; and (3) a federated system of inter-operating

repositories that archive models and data, with ‘‘spheres of influ-

ence’’ based on community consensus.

To address some of the challenges ahead and make recom-

mendations about how best to proceed, the community stake-

holders who assembled at the October 2014 meeting of the

wwPDB Hybrid/Integrative Methods Task Force were divided

into three discussion groups, each tasked with considering a se-

ries of related questions. What experimental data (beyond crys-

tallography, NMR, and 3DEM) should be archived? Where and

how should it be validated? What kinds of non-atomistic models

can we expect and how should they be validated? What are

the criteria for deciding where models should be archived?

How should non-atomistic and mixed atomistic/non-atomistic

models be archived? Should there be a separate archive for inte-

grative (mixed) models (and data)? Should we establish a feder-

ated system of data and model archives to support integrative

structural biology? The three breakout groups were asked to

address these questions, report back with their findings, and

make recommendations for the future. Each group indepen-

dently approached the same set of questions. At the close of

the meeting, the teams converged to compare notes, identify

areas of commonality and diversity, and determine how best

to move forward. The resulting consensus is reflected in this

document.

Recommendations

Recommendation 1. In addition to archiving the models them-

selves, all relevant experimental data and metadata as well as

experimental and computational protocols should be archived;

inclusivity is key.

Ideally, structural models of any kind, derived by any method,

should be archived.

Models are of greatest value when they are independently

tested, potentially improved, and serve to further our under-

standing of how the function of a biological system is determined

by its 3D structure(s). Therefore, models and necessary annota-

tions must be freely available to the research community. The

modeling process should be reproducible. Information concern-

ing all aspects of a model should be deposited, including input

data, corresponding spatial restraints, output models, and pro-

tocols used to convert input data into models. In addition to

the input experimental data, the archival deposition should

specify or include theoretically derived restraints used to

compute the model (e.g., a statistical potential and a molecular

mechanics force field). In practice, frequently used data types

(e.g., distance information) should be prioritized for early com-

plete implementation. Uncertainty in the input data needs to be

well documented; some data uncertainty estimates may require

modeling (e.g., Bayesian error estimates [Rieping et al., 2005]).

Consistency between input data and the structural model should

be documented as part of model validation.

Each expert community should drive decisions as to how

much raw data, processed data, and metadata to deposit,
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subject to the minimal requirement that the spatial restraints

used for modeling must be derivable from the deposited infor-

mation. Attention needs to be paid to annotating measurement

conditions, such as temperature (Fenwick et al., 2014), sample

concentration, environmental conditions (e.g., buffer), construct

definition, and identification of all assembly components, all of

which can significantly influence the experimental outcome.

Cost-benefit analyses should be used to help guide which data

should be archived. As much data as practical should be depos-

ited, to facilitate model validation, future improvements of the

model, and methods development (e.g., benchmarking sets).

Of particular importance will be availability of some raw data to

help drive improvement of data processing methods and for

use by methods developers, who are often not generating the

experimental data themselves.

Recommendation 2. A flexible model representation needs to

be developed, allowing for multi-scale models, multi-state

models, ensembles of models, and models related by time or

other order.

Model representation should allow for as many types of

‘‘structural’’ models as possible, thereby encouraging collabora-

tion among developers of integrative modeling software (Russel

et al., 2012). At a minimum, the model representation should

allow encoding of an ensemble of multi-scale, multi-state,

time-ordered models (see the section on Types of Integrative

Models). Uncertainty of the model coordinates should be tightly

associated with the model coordinates in the model representa-

tion. Any model resident within an archive should be ‘‘self-con-

tained’’ to facilitate utilization (e.g., for visualization). A common

representation and format for models are useful for reasons of

software interoperability. Particle-based representations/primi-

tives need to be prioritized; non-particle-based model represen-

tations (e.g., continuum representations) merit further consider-

ation by appropriate community stakeholders.

Recommendation 3. Procedures for estimating the uncertainty

of integrative models should be developed, validated, and

adopted.

Assessment of both an integrative model and the information

on which it is based is of critical importance for guiding subse-

quent use of the model. For atomistic models, extant standard

validation criteria from X-ray crystallography should be used.

Beyond this test, validation of integrative models and data is a

major research challenge that must be addressed and over-

come. The following represent promising considerations (Alber

et al., 2007; Schneidman-Duhovny et al., 2014): convergence

of conformational sampling, fit of the model to the input informa-

tion, test for clashes between geometrical primitives comprising

the model, precision of the ensemble of solutions (visualized

with, e.g., ribbon plots), cross-validation and statistical boot-

strapping based on available data, tests based on data deter-

mined after the model was computed, and sensitivity analysis

of the model to input data. Bayesian approaches may be partic-

ularly well suited to describe model uncertainty by computing

posterior model densities from a forward model, noise model,

and priors (Muschielok et al., 2008; Rieping et al., 2005). Tools

for visualizing model validation should be developed.

Communities generating data used in integrative modeling

should agree on the standard set of descriptors for data quality,

as has been done for crystallography, NMR, and 3DEM.
Recommendation 4. A federated system of model and data ar-

chives should be created.

Integrative models can be based on a broad array of different

experimental and computational techniques. While the specific

spatial restraints implied by the data and used to construct an

integrative model should be deposited with the model itself,

the underlying experimental data often containmuch richer infor-

mation. This information should be captured in a federated

system of domain-specific model and data archives. These indi-

vidual member archives should be developed by community ex-

perts, based on method-specific standards for data archiving

and validation. A federated system of model and data archives

implies the need for a seamless exchange of information be-

tween independent archives. This seamless exchange requires

a common dictionary of terms, agreed data formats, persistent

and stable data object identifiers, and close synchronization of

policies and procedures. Federated model and data archives

need to develop efficient methods for data exchange to allow

for transparent data access across the enterprise.

A single interface for the deposition of all data and models into

the federated system is highly desirable. Such an interfacewould

greatly facilitate the task of the depositor and, thereby, maximize

compliance with deposition standards and requirements.

In addition, reliance on a single entry point will help to ensure

consistency across the federation at the time of deposition.

Following successful deposition, individual datasets can be

transferred tomember databases for data curation and archiving

if domain-specific databases exist. There should also be provi-

sion for collecting unstructured information in a ‘‘data com-

mons,’’ as proposed by the data science initiative at the NIH

(Margolis et al., 2014).

Access to the contents of the federated database through a

single portal is also most desirable, to facilitate dissemination

of data, models, and experimental/computational protocols.

Of particular importance for integrative modeling will be the

option to modify or update any aspect of the modeling proce-

dure, for example, by adding new data. The federated archive

should allow versioning for each depositedmodel. Such capabil-

ities will facilitate the cycle of experiment and modeling, and

accelerate production of more accurate, precise, and complete

models (Russel et al., 2012).

Recommendation 5. Publication standards for integrative

models should be established.

Over the past decade, the wwPDB organization has worked

with relevant scientific journals to help establish publication

standards for structural models coming from crystallography,

NMR spectroscopy, and 3DEM. Community standards now

include requiring authors to make their validation reports avail-

able to reviewers and editors. Through the International Union

of Crystallography Small Angle Scattering and Journals Com-

missions, the SAS community developed and agreed upon pub-

lication guidelines for structural modeling of biomolecules there-

from (Jacques et al., 2012). A set of standards for publishing

integrative models should be developed along similar lines.

Implementation

Implementation of Recommendation 1 poses a host of cultural

and technical challenges. Experimentalists and modelers need

to provide the data, models, and protocols, thus at least partly

addressing increasing concerns regarding reproducibility of
Structure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 9
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scientific results. From a technical perspective, inter-operating

data dictionaries for all methods need to be created. In addition,

potential storage bottlenecks need to be addressed.

Implementation of Recommendations 2 and 3 will require sig-

nificant research as to how best to represent and validate the

many different kinds of integrative models. In addition, the com-

munity will need to agree on a common set of standards that are

sufficiently mutable to allow for future innovation. Efforts such as

the ‘‘Cryo-EM Modeling Challenge’’ may facilitate this process

(http://www.emdatabank.org/modeling_chllnge).

Implementation of Recommendation 4 will require agreement

on a common data exchange system among member reposi-

tories. Based on past accomplishments, the wwPDB is well posi-

tioned to play a leadership role in establishing the proposed

federated system, including provision of common deposition

and access interfaces. The wwPDB should begin this process

by providing training and advice on data archiving and curation

to contributing domain-specific member repositories.

Implementation of Recommendation 5 will require continued

work with the journals that publish structural models of biological

macromolecules.

Significant resources will be required to implement these rec-

ommendations, including grants for research, infrastructure, and

workshops. These efforts are international by their very nature

and will require funding frommultiple public and private sources,

including in North America, Europe, and Asia.
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Schröder, G.F. (2015). Hybrid methods for macromolecular structure
determination: experiment with expectations. Curr. Opin. Struct. Biol. 31,
20–27.

Schwede, T., Sali, A., Honig, B., Levitt, M., Berman, H.M., Jones, D., Brenner,
S.E., Burley, S.K., Das, R., Dokholyan, N.V., et al. (2009). Outcome of a work-
shop on applications of protein models in biomedical research. Structure 17,
151–159.

Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J.M., Liu, G., Eletsky, A.,
Wu, Y., Singarapu, K.K., Lemak, A., et al. (2008). Consistent blind protein
structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci.
USA 105, 4685–4690.

Shi, Y., Fernandez-Martinez, J., Tjioe, E., Pellarin, R., Kim, S.J., Williams, R.,
Schneidman, D., Sali, A., Rout, M.P., and Chait, B.T. (2014). Structural
characterization by cross-linking reveals the detailed architecture of a
coatomer-related heptameric module from the nuclear pore complex. Mol.
Cell. Proteomics 13, 2927–2943.

Snijder, J., Burnley, R.J., Wiegard, A., Melquiond, A.S.J., Bonvin, A.M.J.J.,
Axmann, I.M., and Heck, A.J.R. (2014). Insight into cyanobacterial circadian
timing from structural details of the KaiB-KaiC interaction. Proc. Natl. Acad.
Sci. USA 111, 1379–1383.
tructure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved 11

http://refhub.elsevier.com/S0969-2126(15)00194-X/sref28
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref28
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref28
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref28
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref29
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref29
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref29
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref29
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref29
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref30
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref30
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref30
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref31
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref31
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref31
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref32
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref32
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref32
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref33
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref33
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref33
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref33
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref34
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref34
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref35
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref35
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref35
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref35
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref36
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref36
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref36
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref36
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref37
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref37
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref37
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref38
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref38
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref38
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref38
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref39
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref39
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref39
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref39
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref40
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref40
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref40
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref40
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref41
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref41
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref41
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref41
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref42
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref42
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref42
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref42
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref43
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref43
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref43
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref44
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref44
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref44
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref44
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref45
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref45
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref46
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref46
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref46
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref47
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref47
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref47
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref48
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref48
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref48
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref49
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref49
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref49
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref49
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref50
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref50
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref50
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref50
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref51
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref52
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref52
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref52
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref53
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref53
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref53
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref53
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref54
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref54
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref55
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref55
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref56
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref56
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref56
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref57
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref57
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref57
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref57
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref58
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref58
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref58
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref59
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref59
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref60
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref60
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref61
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref61
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref61
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref62
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref62
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref62
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref62
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref63
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref63
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref63
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref63
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref64
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref64
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref64
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref64
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref64
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref65
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref65
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref65
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref65


Structure

Meeting Review

Please cite this article in press as: Sali et al., Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop, Structure (2015), http://
dx.doi.org/10.1016/j.str.2015.05.013
Snyder, D.A., Bhattacharya, A., Huang, Y.J., and Montelione, G.T. (2005).
Assessing precision and accuracy of protein structures derived from NMR
data. Proteins 59, 655–661.

Snyder, D.A., Grullon, J., Huang, Y.J., Tejero, R., and Montelione, G.T. (2014).
The expanded FindCore method for identification of a core atom set for
assessment of protein structure prediction. Proteins 82 (Suppl 2 ), 219–230.

Sunnerhagen, M., Olah, G.A., Stenflo, J., Forsen, S., Drakenberg, T., and
Trewhella, J. (1996). The relative orientation of Gla and EGF domains in coag-
ulation factor X is altered by Ca2+ binding to the first EGF domain. A combined
NMR-small angle X-ray scattering study. Biochemistry 35, 11547–11559.

Trewhella, J., Hendrickson, W.A., Kleywegt, G.J., Sali, A., Sato, M., Schwede,
T., Svergun, D.I., Tainer, J.A., Westbrook, J., and Berman, H.M. (2013). Report
of the wwPDB Small-Angle Scattering Task Force: data requirements for bio-
molecular modeling and the PDB. Structure 21, 875–881.

Tria, G., Mertens, H.D.T., Kachala, M., and Svergun, D.I. (2015). Advanced
ensemble modelling of flexible macromolecules using X-ray solution scat-
tering. IUCrJ 2, 207–217.
12 Structure 23, July 7, 2015 ª2015 Elsevier Ltd All rights reserved
Valentini, E., Kikhney, A.G., Previtali, G., Jeffries, C.M., and Svergun, D.I.
(2015). SASBDB, a repository for biological small-angle scattering data.
Nucleic Acids Res. 43, D357–D363.

Ward, A., Sali, A., and Wilson, I. (2013). Integrative structural biology. Science
339, 913–915.

Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids; a
structure for deoxyribose nucleic acid. Nature 171, 737–738.

Whitten, A.E., Jeffries, C.M., Harris, S.P., and Trewhella, J. (2008). Cardiac
myosin-binding protein C decorates F-actin: implications for cardiac function.
Proc. Natl. Acad. Sci. USA 105, 18360–18365.

Young, M.M., Tang, N., Hempel, J.C., Oshiro, C.M., Taylor, E.W., Kuntz,
I.D., Gibson, B.W., and Dollinger, G. (2000). High throughput protein fold
identification by using experimental constraints derived from intramolecular
cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA 97, 5802–
5806.

Zhang, Y., Feng, Y., Chatterjee, S., Tuske, S., Ho,M.X., Arnold, E., and Ebright,
R.H. (2012). Structural basis of transcription initiation. Science 338, 1076–
1080.

http://refhub.elsevier.com/S0969-2126(15)00194-X/sref66
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref66
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref66
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref67
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref67
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref67
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref67
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref68
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref68
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref68
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref68
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref68
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref69
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref69
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref69
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref69
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref71
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref71
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref71
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref72
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref72
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref72
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref73
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref73
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref74
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref74
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref75
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref75
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref75
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref76
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref76
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref76
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref76
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref76
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref77
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref77
http://refhub.elsevier.com/S0969-2126(15)00194-X/sref77

	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop
	Background
	Historical Rationale for the Workshop
	Current Archives for Models and/or Supporting Data
	PDB
	Crystallography: Models and Data
	NMR Spectroscopy: Models and Data
	Electron Microscopy: Models and Maps
	SAS: Data and Model Archiving
	Protein Model Portal


	Integrative/Hybrid Structure Modeling
	Motivation
	Experimental and Computational Methods for Generating Structural Information
	Approach
	Types of Integrative Models

	Task Force Deliberations and Recommendations
	Charge to the Task Force
	Recommendations
	Recommendation 1
	Recommendation 2
	Recommendation 3
	Recommendation 4
	Recommendation 5

	Implementation

	Acknowledgments
	References


